Package: RsqMed 1.1

RsqMed: Total Mediation Effect Size Measure for High-Dimensional Mediators

An implementation of calculating the R-squared measure as a total mediation effect size measure and its confidence interval for moderate- or high-dimensional mediator models. It gives an option to filter out non-mediators using variable selection methods. The original R package is directly related to the paper Yang et al (2021) "Estimation of mediation effect for high-dimensional omics mediators with application to the Framingham Heart Study" <doi:10.1101/774877>. The new version contains a choice of using cross-fitting, which is computationally faster. The details of the cross-fitting method are available in the paper Xu et al (2023) "Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting" <doi:10.1101/2023.02.06.527391>.

Authors:Tianzhong Yang [aut, cre], Chunlin Li [aut], Zhichao Xu [ctb]

RsqMed_1.1.tar.gz
RsqMed_1.1.zip(r-4.5)RsqMed_1.1.zip(r-4.4)RsqMed_1.1.zip(r-4.3)
RsqMed_1.1.tgz(r-4.4-any)RsqMed_1.1.tgz(r-4.3-any)
RsqMed_1.1.tar.gz(r-4.5-noble)RsqMed_1.1.tar.gz(r-4.4-noble)
RsqMed_1.1.tgz(r-4.4-emscripten)RsqMed_1.1.tgz(r-4.3-emscripten)
RsqMed.pdf |RsqMed.html
RsqMed/json (API)

# Install 'RsqMed' in R:
install.packages('RsqMed', repos = c('https://ytzhong.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 159 downloads 1 mentions 3 exports 16 dependencies

Last updated 1 years agofrom:f59ed862c4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:CF_Rsq.measureCI.Rsq.measureRsq.measure

Dependencies:codetoolsCompQuadFormdata.tableforeachglmnetGMMATiteratorslatticeMatrixncvregRcppRcppArmadilloRcppEigenshapeSISsurvival